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We prove some inequalities for two-point correlations of Ising antiferromagnetg 
and derive inequalities relating correlations of ferromagnets to correlations of 
antiferromagnets whose interactions and field strengths have equal magnitudes. 
The proofs are based on the method of duplicate spin variables introduced by 
J. Percus and used by several authors to derive correlation inequalities for Ising 
ferromagnets. 

KEY WORDS: Antiferromagnet; correlation inequalities; Ising model. 

1. I N T R O D U C T I O N  

Correlation inequalities have played an important role in statistical 
mechanics, especially as applied to ferromagnetic Hamiltonians. It is the 
purpose of this paper to apply known techniques to obtain some correla- 
tion inequalities for antiferromagnets. 

Let Hi(a) be a ferromagnetic Hamiltonian for finite volume A in Z a 
given by 

( i , j ) ~ A  i~A i~A 
j(~A 

and H(x) a corresponding antiferromagnetic Hamiltonian for A given by 

H(x )=  Z Koxixj+ ~ Koxigj-h Z xi (1.2) 
( i , j ) = A  i~A i~A 

j(~A 
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where the first sums in (1.1) and (1.2) are over all distinct pairs (i, j)  in A, 
{2j} and {6j} represent boundary configurations, and K o. = (-1)lib + uIj#.. 
Here )il = 1(il, i2,..-,id)l = 1il1 + "" + lial and X i ,  O'i= _1, and J~<0 .  We 
will consider (1.2) with the change of variable xi = ( -  1 )I;I si and denote the 
resulting Hamiltonian by H2(s), so that 

H2(s )=  ~ J j i s j +  • J~jsfij- ~ kis , (1.3) 
(i , j)  c A  i ~ A  l E A  

j(~ A 

where ki = (-1)lah.  We will denote expectations with respect to the finite- 
volume Gibbs states corresponding to (1.1) and (1.3) by ( - ) r  and ( . ) a ,  
respectively; boundary configurations will always be assumed fixed. 

In Section 2 we derive Lebowitz-type inequalities (3) which allow the 
comparison of correlations corresponding to Hamiltonians ( 1.1 ) and (1.3). 
When h = 0, (1.1) and (1.3) are equal and have equal correlation functions. 
When h # 0, Hi (a )  has a unique phase for all temperatures, which implies 
decay properties of truncated correlation functions for Hi(a).  Our 
inequalities are valid for all h, even though h r 0 includes both single- and 
multiple-phase regions for H(x) (see, for example, ref. 1). 

In Section 3 we prove some monotonicity properties for two-point 
correlations corresponding to (1.3). The method of proof is based on the 
techniques used by Messager and Miracle-Sole (a) to derive, among other 
things, monotonicity properties for correlations corresponding to nearest 
neighbor ferromagnetic interactions. We make some modifications of their 
methods to accommodate nonnearest neighbor interactions and n o n -  
positive external field {k,}. We allow our Hamiltonians to have infinite 
range, but our inequalities are weaker than those of ref. 4 for the 
ferromagnetic case. We note that Hegerfeldt (2) generalized some of the 
monotonicity results in ref. 4 for ferromagnetic correlations, but the 
methods of ref. 2 do not seem to extend readily to antiferromagnetic inter- 
actions. 

2. Compar ison  of Corre la t ions  

Let two Ising spin Hamiltonians Ha(a ) and Hb(s ) for volume A in Z a 
be given by 

Ha(O-)= ~, Jijff i6j  - ~ hi(5 i (2.1) 
(i , j)  c A  i ~ A  

Hb(s)= ~ Jgs,sj-- ~ k,s, (2.2) 
( i , j ) = A  i ~ A  



Correlation Inequalities 1051 

where Jij ~< 0 and ai, s i 
and ki are of the form 

= _+1 for all i, j ~ Z  a. The external field variables hi 

hi=h;- Z Lj j (2.3) 
jgaA 

k i = k ; -  Z JJJ  (2.4) 
jq~A 

where {6j} and {gj} may be interpreted as fixed boundary configurations. 
Correlation functions, for a finite set B in Z d, with respect to the finite- 
volume Gibbs measures for (2.1) and (2.2) will be denoted by 
(I-Ii~B ~ri) = ( a B )  and (I-Ii~e si) = (SB), respectively. 

Let 

H i = h i -t- ki, Ki = hi - ki 
Define spin variables qi and t i taking values - 1, 0, + 1 by 

(2.5) 

ti = 1/2(ai + si), qi = 1/2(cri- si) (2.6) 

Let ((-)) denote expectations with respect to the product measure 

1 1 

Za(A) Zb(A) 
e x p { - ~ [ H a ( a ) +  Hb(s)] } (2.7) 

where Z~(A) and Z b ( A  ) a r e  the partition functions for Ha(o) and Hb(A), 
respectively. For finite sets A, B in Z d, let tA = l~i~a ti and s s =  1-Ii~ qi. 
The following theorem, though not stated in this generality, was proved by 
Lebowitz (3) (see also Percus (5) and Sylvester~7)). 

Theorem 2.1. If Hi, Ki~> 0 for all i~ A, then for any two subsets A, 
B in A, 

(a) ((tA)), ((qA))>~O 

(b) ((t~t~)) >>- (( tA))(( t~))  

(C) ((qAqs)) >>" ((qA))((qg)) 
(d) ((qA))((t~)) >1 ((qAt~)) 

Remark 2,1. By symmetry, it may be assumed that Hi, Ki~<0, in 
which case inequalities (a)-(d) are modiified by replacing each qi by - q i  
and each ti by - - t  i. 

Corollary 2.1. With the same assumptions as in Theorem 2.1, 

(a) ((tA)) decreases and ((qA)) increases as each Ki increases 

(b) ((tA)) increases and ((qA)) decreases as each H i increases 
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Proof. This follows by differentiating ((ta)) and ((qa)) by H, or K~ 
and applying (b), (c), or (d) of Theorem 2.1. 

A substantial generalization of part (a) of the following corollary was 
proved by Lebowitz (8) (see also Griffiths(9)). 

Corollary 2.2. If Hi, Ki ~> 0 for all i e A, then for any subset B in A, 
and any i, j e A, 

(a) @ ~ )  > I(sB)l 

(b) (a ia s ) -  (a i ) (a j )  <~ (s,s s) - (s i)(si)  

ProoL The following identities, where ~r,. and s~ may be complex 
numbers, are well known and easily verified (see, for example, ref. 2): 

H O'i+ 1-I Si =2-tal+1 E l~i ({ri--si) FI (6i+Si) (2.8) 
i ~ A  i E A  B o A  i ~ B  i E A X B  

[B[ even 

H ~r i - l~  s ,=2-Ja l+l  E [ I  (cri-s;) I-[ (a, +si) (2.9) 
t e a  i e A  B o A  i ~ B  i e A X B  

IBI o d d  

where IA[ denotes the cardinality of A. Identifying ai and si as Ising spin 
variables yields 

FI a ; -  I-I si = 2  Z qBta\B (2.10) 
t E A  i c A  B ~ A  

[BI odd  

and 

[ I  a i+  l-I s i=2  ~ q~tA\8 (2.11) 
i ~ A  i ~ A  B ~ A  

IBI even  

Taking ((-)) expectations of (2.10) and (2.11) yields part (a) of the 
corrollary. The proof of part (b) follows directly from part (d) of 
Theorem 2.1 with A = {i} and B = {j}. This completes the proof. 

We now consider the special case for the Hamiltonians (2.1) and (2.2), 
where in Eq. (2.3), h ~ - h  for all i and some constant h, and in Eq. (2.4), 
k;=(-1)lilh. With these identifications Ha(cr) equals Hi(a), given by 
Eq.(1.1), and Hb(s) equals H2(s), given by Eq.(1.3). The following 
corollary is now an immediate consequence of Corollary 2.2. 

Corollary 2.3. Let h~>O. Assume that for all i~A 

(a) h>~ 1/2ZjCAJo(6j+gj) 
{b) Zj~A J,j(oj- ~j) ~ 0 
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Then for any subset B of A, and any i, j e A, the following inequalities for 
the correlations of the Hamiltonians given by (1.1) and (1.3) hold: 

(b) (o,a2)F-- (Oi)F(~r2)F~ (SiSi)A-- (S~),4 (Sj)A 

Remark 2.2. An analogous statement may be made for h ~< 0 (see 
Remark 2.1 ). 

Remark 2.3. The hypotheses to Corollary 2.3 are satisfied, for exam- 
ple, if 8 j=  +1 for all j~A.  In this case gj for j ~ A  may be chosen 
arbitrarily. It is also easily shown that if Hi(o)  and H2(s) both have empty 
or both have periodic boundary conditions, then (a) and (b) of 
Corollary 2.3 hold. 

3. M O N O T O N I C I T Y  PROPERTIES FOR A N T I F E R R O M A G N E T S  

In this section we prove some monotonicity, properties for two-point 
correlations for antiferromagnets. Denote by H(s) the Hamiltonian 

H(s) = ~ Jo.s,sj- Z kisi (3.1) 
A i~A 

where here and below ~A means sum over all distinct pairs (i, j )  in the 
subset A in Z d. We also assumed that Ja ~< 0 and that Ju is a function of 
]]i-jH, the Euclidean norm of i - j .  The external field ki is given by 

ki = k ; -  ~ J j j  (3.2) 
j•A 

for some boundary configuration {~j}, where k[ = (-1)l~lh for some h/> 0, 
so that H(s) is equal to the antiferromagnetic Hamiltonian (l.3). In this 
section, denote by ( . )  or ( . ) A  expectations with respect to the finite- 
volume Gibbs state determined by (3.1). 

Theorem 3.1. Let (p: Z a--, Z a by ( p ( i l  . . . .  , ia) = ( -  (il + 2), i2,..., ia). 
Let A be a rectangle in Z d invariant under r and let the boundary 
configuration {;j) be invariant under ~p. Suppose also that I Jd ]  /> 
1/2 ]J~o(j)l. Then for any i, j e A  with i l , j l  ~0, 

(sisj) >~ (sis~(j)) (3.3) 

Remark 3. I. It is also possible to consider periodic boundary condi- 
tions. If 0 c A ,  (3.3) and the symmetry of the finite-volume Gibbs state 
imply 

(SoS j )  ~ (SoS(jl+2,j2,...,jd)) (3.4) 

for Jl/> O, where So is the spin at the origin of Z a. 
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ProoL Let 

A+ = { i~A:  i I > --1} 

Ao= { i6A:  il = - 1 }  

A = { i 6 A : i l < - l }  

T h e n A = A + w A o w A  and~o(A+)=A ,q~(A ) = A + , a n d q ~ ( A o ) = A o .  
Denote ~o(i) by i~ .  With this notation we can write 

E J o ' s i s j = E  Jo ' (S iSj+si~s j - )  + E E J u ( s i s j + s i - s j  - )  
A A+ i~A 0 j~:A+ 

+ 1/2 y, .t o (si~s + si_ sj_ ) + 1/2 y~ J~_ (s&_ + s,_ ~j) 
Ao A+ 

+ 1/2 ~ Jii~(sisi~ +sisi~ ) 
i~A+ 

The last two terms on the right side of (3.5) may be rewritten as 

(3.5) 

1/2 ~ Jo_(si+s,~)(sj+sj_)-1/2 ~ Jo_(s,sj+s~_sj_) 
A+ A+ 

+1 /2  ~ J i i_ (S i+Si_)  2 -  E Jii~ 
lEA+ lEA+ 

Let 

t, = 1/2 (s i + s i_ ) and qi = 1/2 (si - si~ ) 

so that 

sisj + si_ a)~ = 2(titj + qiqs) 

Combining (3.5)-(3.7) and observing that q i= 0 if i~Ao gives 

(3.6) 

(3.7) 

E Josisj = E (2J~ - J~~ ) qiqj + Y', 2(J/j + Ju- )titj 
A A+ A+ 

+ 2  ~ y '  J i j t i t j+~Ji j t i t j  
i~Ao j~A+ AO 

+ 2 Z J i i _ t 2 i - Z J i i ~  
A+ A+ 

Now define Hi = ki + ki~ and Ki = k i -  k~_, so that 

(3.8) 

kis i + k,_ si_ = Hit,  + Kiqi (3.9) 
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From the definition of ~0 and k~ and the invariance of the boundary condi- 
tions {ss} under q~, it follows that K i = 0  for all i eA.  Thus, to within an 
additive constant, H(s) = HI(q) + HZ(t), where 

HI(q) = ~ N~jqiqi 
A+ 

H2(t)= ~', M~jtitj+2 Z J~i~tzi 
A+uAo iEA+ 

+ E Hit ,+ 1/2 E ni t i  
iEA+ i~A 0 

(3.10) 

and N~ and M U are nonpositive. 
From the definitions of qi and ti it follows that t; = 0 iff qi = -+ 1 and 

qe=0 iff ti= +1. Also, if ieAo,  then t i=  _+1. For any functions ~b(q) and 
O(t), 

1 
- ~q) (q)~( i )exp{-[3[Hl(q)+HZ(t )]}  (3.11) 

(O(q)  ~ l ( t ) )  ZA(S)  (q,t) 

where the sum in (3.11) is over all pairs q =  (qi}i~A+ and t =  {ti)i~A+~Ao 
such that t i=  _1 if ieAo,  and q i = 0  iff t t=  +1 otherwise. Equation (3.11) 
may be rewritten as 

1 
= z (O(q) O(t)) ZA(S) AO=,~=Ao~A+ 

O(q) z~(q) ~,(t) zA4t) 

x exp{ -/~EHl(q) + H2(t)] } (3.12) 

where the sums on q and t now include the values _ 1 for qi and ti, but 
not zero, A C = (A + ~ Ao)\A, and 

10 when qi=O iff i e A  
zA(q) = otherwise 

For any A c A o u A + ,  let 

Y., ZAc(t) expE--/~HZ(t)] •q )~A(q) exp[ - flHl(q) ] 
P(A) = 

_ z A ( t )  z . c ( q )  

ZA(s) 

- ( 3 . 1 3 )  ZAs) 
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where ZA~(q) and ZA(t ) a r e  the usual Ising partition functions, respectively, 
for Hi(q) and H2(t) with qi, t i= _+1. Then (3.12) may be rewritten as 

(~(q) tp(t) ) = 
Ao~A=AowA+ 

where 

P(A)( (J (q)  zA(q))AC, q ( ~ ( t )  ZA~(t))A,t (3.14) 

( (~(q) zA(q) ) AC, q = Z Ac(q) -~ ~ la(q) (~(q) exp[ -- 3Hl(q) ] 
q 

and (~(t)  gA~(t))A,, has an analogous expression. Let ~ ( t ) - I  and 
(~(q) = qeqs. Then 

(q~qj) = ~ P(A)(qiqjza(q) ) AC, q ~ 0 (3.15) 
A 

since by Griffith's inequality each term in the sum is nonnegative. Thus, 

(sisj) + (s~~ sj~)>~ (s~~ sj) + (siss~ ) (3.16) 

and the conclusion of the theorem now follows from the invariance of A 
and the boundary conditions under the reflection q~. This completes the 
proof. 

The following corollary, establishing a version of the Percus inequality 
or the first Lebowitz inequality, follows immediately from the arguments 
leading up to Eq. (3.14). 

Coro l la ry  3.1. With the hypotheses and notation of Theorem 3.1, 

(i~A (s i -  s~ ) )  ~O (3.17) 

for any A in A+. 

T h e o r e m  3.2 .  Let ~: Z d ~ Z d by ~u(it . . . . .  id) = (-- (i~ + 1), i 2 . . . . .  id). 
Let a rectangle A in Z d and a boundary condition {gj}j~Ac be invariant 
under ~. Then for any i , j ~ A  with il,j~ >10 

(sisj) >~ - (sis~,~j)) (3.18) 

The proof of Theorem 3.2 is similar to and simpler than the proof of 
Theorem 3.1. In this c a s e A + = { i E A : i ~ > 0 } , A  = ( i ~ A : i < ~ - l } , a n d A  o 
is empty. With analogous notation as in the proof of Theorem 3.1, H i - 0  
and it follows that ( ILIA t~)~>0 for any subset A of A+. The case in 
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which Jij is nonzero only for [[i-jl[ = 1 was essentially contained in the 
proof of an analogous theorem (Theorem 1) of Messager and Miracle- 
Sole (e) for Ising ferromagnets. 

C o r o l l a r y  3.2. If Jo satisfies the conditions of Theorem 3.1, then 

(1) ( S o S j ) ~ o )  (SoS(jl+2j2,...,jd))C~ o 

(2) (SoSj)  +-or ) --(SoS(jl+l,j2,...,jd))C~ 

for any j with Jl ~> 0, where 

(SoSj)  ! = lira (SoSj)A 
o~ A T Zd 

with boundary conditions g j -  + 1 or g j -  - 1  for all j E A c and the limit 
may be taken along any sequence An increasing to Z a. 

Proof. Let pj = 1/2(sj + 1). Then PoPs is an increasing function in the 
sense used in the F K G  inequalities. Since 4popj = [SoSj + So + s s + 1 ] and So 
and sj are also increasing, it follows that l im(soss )  A exists along any 
sequence An increasing to Z d. Let A, be as in Theorem 3.1 and le t /7 ,  be 
the reflection of An across the hyperplane Jl = 0. Then 

(SoSo(s))A, = (SoSuI + 2,j2,...,jd})~, 

Inequality (1) now follows by applying Theorem 3.1 and taking limits. The 
proof of (2) is similar. 

Remark  3.2. We note that other axes and reflections may be used in 
Theorems 3.1 and 3.2; the crucial point is that He or Ki or both (as in the 
case of ferromagnetic interactions) must be nonnegative [see (3.9)]. 
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